Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 59(8): 979-990.e5, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38458189

RESUMO

Argonaute (AGO) proteins are evolutionarily conserved RNA-binding proteins that control gene expression through the small RNAs they interact with. Whether AGOs have regulatory roles independent of RNAs, however, is unknown. Here, we show that AGO1 controls cell fate decisions through facilitating protein folding. We found that in mouse embryonic stem cells (mESCs), while AGO2 facilitates differentiation via the microRNA (miRNA) pathway, AGO1 controls stemness independently of its binding to small RNAs. We determined that AGO1 specifically interacts with HOP, a co-chaperone for the HSP70 and HSP90 chaperones, and enhances the folding of a set of HOP client proteins with intrinsically disordered regions. This AGO1-mediated facilitation of protein folding is important for maintaining stemness in mESCs. Our results demonstrate divergent functions between AGO1 and AGO2 in controlling cellular states and identify an RNA-independent function of AGO1 in controlling gene expression and cell fate decisions.


Assuntos
Proteínas Argonautas , Diferenciação Celular , Células-Tronco Embrionárias Murinas , Dobramento de Proteína , Animais , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem da Célula
2.
Virol J ; 21(1): 2, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172898

RESUMO

Only few studies have investigated the prevalence of feline coronavirus (FCoV) infection in domestic cats in Fujian, China. This is the first study to report the prevalence rate of FCoV infection in domestic cats in Fujian, China, and to analyse the epidemiological characteristics of FCoV infection in the region. A total of 112 cat faecal samples were collected from animal hospitals and catteries in the Fujian Province. RNA was extracted from faecal material for reverse transcription polymerase chain reaction (RT-PCR). The prevalence rate of FCoV infection was determined, and its epidemiological risk factors were analysed. The overall prevalence of FCoV infection in the cats, was 67.9%. We did not observe a significant association between the age, sex, or breed of the cats included in the study and the prevalence rate of the viral infection. Phylogenetic analysis showed that the four strains from Fujian were all type I FCoV. This is the first study to analyse the prevalence and epidemiological characteristics of FCoV infection in domestic cats in Fujian, China, using faecal samples. The results of this study provide preliminary data regarding the prevalence of FCoV infection in the Fujian Province for epidemiological studies on FCoV in China and worldwide. Future studies should perform systematic and comprehensive epidemiological investigations to determine the prevalence of FCoV infection in the region.


Assuntos
Infecções por Coronavirus , Coronavirus Felino , Peritonite Infecciosa Felina , Gatos , Animais , Peritonite Infecciosa Felina/epidemiologia , Peritonite Infecciosa Felina/genética , Prevalência , Filogenia , RNA Viral/genética , RNA Viral/análise , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Coronavirus Felino/genética , China/epidemiologia
3.
Cell Host Microbe ; 31(10): 1655-1667.e6, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738984

RESUMO

Gut microbiota and its symbiotic relationship with the host are crucial for preventing pathogen infection. However, little is known about the mechanisms that drive commensal colonization. Serratia bacteria, commonly found in Anopheles mosquitoes, potentially mediate mosquito resistance to Plasmodium. Using S. ureilytica Su_YN1 as a model, we show that a quorum sensing (QS) circuit is crucial for stable colonization. After blood ingestion, the QS synthase SueI generates the signaling molecule N-hexanoyl-L-homoserine lactone (C6-HSL). Once C6-HSL binds to the QS receptor SueR, repression of the phenylalanine-to-acetyl-coenzyme A (CoA) conversion pathway is lifted. This pathway regulates outer membrane vesicle (OMV) biogenesis and promotes Serratia biofilm-like aggregate formation, facilitating gut adaptation and colonization. Notably, exposing Serratia Su_YN1-carrying Anopheles mosquitoes to C6-HSL increases Serratia gut colonization and enhances Plasmodium transmission-blocking efficacy. These findings provide insights into OMV biogenesis and commensal gut colonization and identify a powerful strategy for enhancing commensal resistance to pathogens.

4.
Nat Commun ; 14(1): 5157, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620328

RESUMO

The gut microbiota is a crucial modulator of Plasmodium infection in mosquitoes, including the production of anti-Plasmodium effector proteins. But how the commensal-derived effectors are translocated into Plasmodium parasites remains obscure. Here we show that a natural Plasmodium blocking symbiotic bacterium Serratia ureilytica Su_YN1 delivers the effector lipase AmLip to Plasmodium parasites via outer membrane vesicles (OMVs). After a blood meal, host serum strongly induces Su_YN1 to release OMVs and the antimalarial effector protein AmLip into the mosquito gut. AmLip is first secreted into the extracellular space via the T1SS and then preferentially loaded on the OMVs that selectively target the malaria parasite, leading to targeted killing of the parasites. Notably, these serum-induced OMVs incorporate certain serum-derived lipids, such as phosphatidylcholine, which is critical for OMV uptake by Plasmodium via the phosphatidylcholine scavenging pathway. These findings reveal that this gut symbiotic bacterium evolved to deliver secreted effector molecules in the form of extracellular vesicles to selectively attack parasites and render mosquitoes refractory to Plasmodium infection. The discovery of the role of gut commensal-derived OMVs as carriers in cross-kingdom communication between mosquito microbiota and Plasmodium parasites offers a potential innovative strategy for blocking malaria transmission.


Assuntos
Culicidae , Parasitos , Plasmodium , Animais , Fosfatidilcolinas , Transporte Biológico
5.
RNA ; 29(10): 1453-1457, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37414463

RESUMO

RNA-binding proteins (RBPs) are critical regulators of gene expression. An RBP typically binds to multiple mRNAs and modulates their expression. Although loss-of-function experiments on an RBP can infer how it regulates a specific target mRNA, the results are confounded by potential secondary effects due to the attenuation of all other interactions of the target RBP. For example, regarding the interaction between Trim71, an evolutionarily conserved RBP, and Ago2 mRNA, although Trim71 binds to Ago2 mRNA and overexpression of Trim71 represses Ago2 mRNA translation, it is puzzling that AGO2 protein levels are not altered in the Trim71 knockdown/knockout cells. To address this, we adapted the dTAG (degradation tag) system for determining the direct effects of the endogenous Trim71. Specifically, we knocked in the dTAG to the Trim71 locus, enabling inducible rapid Trim71 protein degradation. We observed that following the induction of Trim71 degradation, Ago2 protein levels first increased, confirming the Trim71-mediated repression, and then returned to the original levels after 24 h post-induction, revealing that the secondary effects from the Trim71 knockdown/knockout counteracted its direct effects on Ago2 mRNA. These results highlight a caveat in interpreting the results from loss-of-function studies on RBPs and provide a method to determine the primary effect(s) of RBPs on their target mRNAs.


Assuntos
Biossíntese de Proteínas , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Cell Death Dis ; 14(6): 384, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385990

RESUMO

The widespread application of antiandrogen therapies has aroused a significant increase in the incidence of NEPC, a lethal form of the disease lacking efficient clinical treatments. Here we identified a cell surface receptor neurokinin-1 (NK1R) as a clinically relevant driver of treatment-related NEPC (tNEPC). NK1R expression increased in prostate cancer patients, particularly higher in metastatic prostate cancer and treatment-related NEPC, implying a relation with the progression from primary luminal adenocarcinoma toward NEPC. High NK1R level was clinically correlated with accelerated tumor recurrence and poor survival. Mechanical studies identified a regulatory element in the NK1R gene transcription ending region that was recognized by AR. AR inhibition enhanced the expression of NK1R, which mediated the PKCα-AURKA/N-Myc pathway in prostate cancer cells. Functional assays demonstrated that activation of NK1R promoted the NE transdifferentiation, cell proliferation, invasion, and enzalutamide resistance in prostate cancer cells. Targeting NK1R abrogated the NE transdifferentiation process and tumorigenicity in vitro and in vivo. These findings collectively characterized the role of NK1R in tNEPC progression and suggested NK1R as a potential therapeutic target.


Assuntos
Neoplasias da Próstata , Receptores da Neurocinina-1 , Masculino , Humanos , Receptores da Neurocinina-1/genética , Aurora Quinase A , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Quinase C-alfa , Transdução de Sinais , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética
7.
Environ Sci Pollut Res Int ; 30(20): 58019-58029, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36973628

RESUMO

Reed is a typical emerged plant in constructed wetlands (CWs). Its litters were used as raw materials for preparing Fe-C ceramic-filler (Fe-C-CF). The physical and chemical properties of Fe-C-CF were studied under different conditions, including the mass ration of Fe to carbon (Fe/C ratio), sintering temperature, and time, to determine the optimum preparing conditions. Meanwhile, the denitrification performance and CO2 emission flux of the surface flow constructed wetland (SFCW) systems were investigated when using Fe-C-CF as the matrix. The optimum preparing conditions for Fe-C-CF were Fe/C ratio of 1:1, sintering temperature and time of 500 °C and 20 min, respectively. The SFCW system with Fe-C-CF obtained a higher total nitrogen (TN), nitrate nitrogen (NO3--N), and ammonia nitrogen (NH3-N) removal efficiencies than the control SFCW system without Fe-C-CF. Compared with the heterotrophic denitrification process, the SFCW system with Fe-C-CF decreased CO2 emission by 67.9 g m-2 per year. The results of microbial community analysis indicated that addition of Fe-C-CF increased the diversity and abundance of microbial communities in the SFCW systems. The dominant genus of the SFCW system with Fe-C-CF was Bacillus, while Uliginosibacterium was the dominant genus in the system without the filler.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Consórcios Microbianos , Dióxido de Carbono , Nitrogênio/análise , Desnitrificação
8.
PLoS Biol ; 21(2): e3001947, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757932

RESUMO

Congenital hydrocephalus (CH) is a common neurological disorder affecting many newborns. Imbalanced neurogenesis is a major cause of CH. Multiple CH-associated mutations are within the RNA-binding domain of Trim71, a conserved, stem cell-specific RNA-binding protein. How these mutations alter stem cell fate is unclear. Here, we show that the CH-associated mutations R595H and R783H in Trim71 accelerate differentiation and enhance neural lineage commitment in mouse embryonic stem cells (mESCs), and reduce binding to mRNAs targeted by wild-type Trim71, consistent with previous reports. Unexpectedly, however, each mutant binds an ectopic and distinct repertoire of target mRNAs. R595H-Trim71, but not R783H-Trim71 nor wild-type Trim71, binds the mRNA encoding ß-catenin and represses its translation. Increasing ß-catenin by overexpression or treatment with a Wnt agonist specifically restores differentiation of R595H-Trim71 mESCs. These results suggest that Trim71 mutations give rise to unique gain-of-function pathological mechanisms in CH. Further, our studies suggest that disruption of the Wnt/ß-catenin signaling pathway can be used to stratify disease etiology and develop precision medicine approaches for CH.


Assuntos
Hidrocefalia , beta Catenina , Animais , Camundongos , beta Catenina/genética , Mutação com Ganho de Função , Diferenciação Celular/genética , Mutação/genética , Hidrocefalia/genética , Via de Sinalização Wnt/genética
9.
Pathol Res Pract ; 242: 154318, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36701849

RESUMO

OBJECTIVES: WD repeat-containing protein 74 (WDR74) has been linked with the development of lung cancer. This study aims to investigate the relationship between WDR74 rs11231247 and non-small cell lung cancer (NSCLC) susceptibility and the prognosis of NSCLC patients. METHODS: UALCAN, MethPrimer, ensembl and Pancan meQTL databases were used for bioinformatics analysis. The case-control study included 462 NSCLC patients and 462 health controls. WDR74 rs11231247 genotype was determined by PCR-RFLP. Logistic regression model was used to calculate odds ratio (OR) and 95% confidence interval (95% CI) for analyzing the association of WDR74 SNP with the risk of NSCLC. Log-rank test and Cox regression analysis were used to evaluate the effect of WDR74 genetic variation on the prognosis of NSCLC. RESULTS: Compared with normal tissues, WDR74 expression level was higher and methylation level was lower in LUAD tissues. There were two CpG islands presented in the promoter of WDR74. And rs11231247 was in the second CpG island. We then discovered that rs11231247 CC and CT were more likely modified by methylation. LUAD case-control study demonstrated that rs11231247 CC genotype was associated with NSCLC risk with OR (95%CI) of 5.29 (2.59-10.79). Stratified analysis showed that rs11231247 T > C polymorphism could increase NSCLC risk in younger subjects (age≤58) (OR = 1.64, 95%CI = 1.06-2.54, P = 0.027). Survival analysis and Cox regression analysis showed rs11231247 CC genotype contributed to a poor prognosis of NSCLC patients (MST=21, HR=2.09, 95%CI=1.17-3.75). CONCLUSION: WDR74 rs11231247 polymorphism affected the risk and prognosis of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas de Ligação a RNA , Humanos , Pessoa de Meia-Idade , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Casos e Controles , Genótipo , Neoplasias Pulmonares/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Prognóstico , Proteínas de Ligação a RNA/genética
10.
EMBO Rep ; 24(2): e55843, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36573342

RESUMO

Congenital hydrocephalus (CH) is a major cause of childhood morbidity. Mono-allelic mutations in Trim71, a conserved stem-cell-specific RNA-binding protein, cause CH; however, the molecular basis for pathogenesis mediated by these mutations remains unknown. Here, using mouse embryonic stem cells as a model, we reveal that the mouse R783H mutation (R796H in human) alters Trim71's mRNA substrate specificity and leads to accelerated stem-cell differentiation and neural lineage commitment. Mutant Trim71, but not wild-type Trim71, binds Lsd1 (Kdm1a) mRNA and represses its translation. Specific inhibition of this repression or a slight increase of Lsd1 in the mutant cells alleviates the defects in stem cell differentiation and neural lineage commitment. These results determine a functionally relevant target of the CH-causing Trim71 mutant that can potentially be a therapeutic target and provide molecular mechanistic insights into the pathogenesis of this disease.


Assuntos
Hidrocefalia , Proteínas com Motivo Tripartido , Animais , Humanos , Camundongos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Hidrocefalia/genética , Células-Tronco Embrionárias Murinas/metabolismo , Mutação , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
ChemMedChem ; 18(5): e202200651, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585386

RESUMO

Innovations in synthetic chemistry have a profound impact on the drug discovery process, and will always be a necessary driver of drug development. As a result, it is of significance to develop novel simple and effective synthetic installation of medicinal modules to promote drug discovery. Herein, we have developed a NaClO-mediated cross installation of indoles and azoles, both of which are frequently encountered in drugs and natural products. This effective toolbox provides a convenient synthetic route to access a library of N-linked 2-(azol-1-yl) indole derivatives, and can be used for late-stage modification of drugs, natural products and peptides. Moreover, biological screening of the library has revealed that several adducts showed promising anticancer activities against A549 and NCI-H1975 cells, which give us a hit for anticancer drug discovery.


Assuntos
Azóis , Produtos Biológicos , Indóis , Descoberta de Drogas
12.
Exp Ther Med ; 24(6): 734, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36382103

RESUMO

Increasing evidence has shown that chondroitin sulfate proteoglycan 4 (CSPG4) serve a critical role in tumor progression. However, the roles of chondroitin sulfate proteoglycan 4 pseudogene 12 (CSPG4P12) remain to be elucidated. The present study aimed to investigate the potential effects of CSPG4P12 on the physiological behaviors of non-small cell lung cancer (NSCLC) and its underlying biological mechanism. The expression levels of CSPG4P12 in NSCLC tissues and adjacent normal tissues were analyzed using the gene expression profiling interactive analysis 2 database and reverse transcription-quantitative PCR. Cell Counting Kit-8 and colony formation assays were performed to measure cell proliferation. In addition, Transwell and wound healing assays were performed to assess cell invasion and migration. Cell adhesion was measured by cell-extracellular matrix adhesion assay. Hoechst 33342 staining assay was performed to detect nucleoli of apoptotic cells, and transmission electron microscopy (TEM) was utilized for apoptosis detection. Immunofluorescence and western blot assays were performed to measure the expression levels of apoptosis-related proteins. The present results revealed that the expression levels of CSPG4P12 in NSCLC tissues were significantly lower compared with those in adjacent normal tissues. Overexpression of CSPG4P12 inhibited cell proliferation, invasion, migration and adhesion whilst promoting apoptosis. There were missing mitochondrial cristae and mitochondrial vacuoles in the CSPG4P12-overexpressed cells when observed under TEM. Overexpression of CSPG4P12 also increased the expression of Bax and p53, whereas it inhibited the expression of Bcl2. In conclusion, CSPG4P12 could inhibit NSCLC development and tumorigenesis by activating the p53/Bcl2/Bax mitochondrial apoptotic pathway.

13.
Pathol Oncol Res ; 28: 1610455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032660

RESUMO

Purpose: Lung adenocarcinoma is one of the most common malignancies. Though some historic breakthroughs have been made in lung adenocarcinoma, its molecular mechanisms of development remain elusive. The aim of this study was to identify the potential genes associated with the lung adenocarcinoma progression and to provide new ideas for the prognosis evaluation of lung adenocarcinoma. Methods: The transcriptional profiles of ten pairs of snap-frozen tumor and adjacent normal lung tissues were obtained by performing RNA-seq. Weighted gene co-expression network analysis (WGCNA) was used to construct free-scale gene co-expression networks in order to explore the associations of gene sets with the clinical features and to investigate the functional enrichment analysis of co-expression genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Gene Set Enrichment Analysis (GSEA) analyses were performed using clusterProfiler. The protein-protein network (PPI) was established using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and hub genes were identified using Cytohubba in Cytoscape. Transcription factor enrichment analysis was performed by the RcisTarget program in R language. Results: Based on RNA-seq data, 1,545 differentially expressed genes (DEGs) were found. Eight co-expression modules were identified among these DEGs. The blue module exhibited a strong correlation with LUAD, in which ADCY4, RXFP1, AVPR2, CALCRL, ADRB1, RAMP3, RAMP2 and VIPR1 were hub genes. A low expression level of RXFP1, AVPR2, ADRB1 and VIPR1 was detrimental to the survival of LUAD patients. Genes in the blue module enriched in 86 Gene Ontology terms and five KEGG pathways. We also found that transcription factors EGR3 and EXOSC3 were related to the biological function of the blue module. Overall, this study brings a new perspective to the understanding of LUAD and provides possible molecular biomarkers for prognosis evaluation of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Proteína Semelhante a ELAV 2/genética , Neoplasias Pulmonares , Biomarcadores Tumorais , China , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Idioma
14.
PeerJ ; 10: e12816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111412

RESUMO

BACKGROUND: Complement system plays an important role in innate immunity which involved in the changes tumor immune microenvironment by mediating the inflammatory response. This study aims to explore the relationship between complement component 7 (C7) polymorphisms and the risk of gastric cancer (GC). MATERIALS AND METHODS: All selected SNPs of C7 were genotyped in 471 patients and 471 controls using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by unconditional Logistic regression to analyze the relationship between each genotype and the genetic susceptibility to gastric cancer. The level of C7 expression in GC was analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) and detected by Enzyme Linked Immunosorbent Assay. Kaplan-Meier plotter were used to reveal C7 of prognostic value in GC. We examined SNPs associated with the expression of C7 using the GTEx database. The effect of C7 polymorphisms on the regulatory activity of C7 was detected by luciferase reporter assay. RESULTS: Unconditional logistic regression showed that individuals with C7 rs1376178 AA or CA genotype had a higher risk of GC with OR (95% CI) of 2.09 (1.43-3.03) and 1.88 (1.35-2.63), respectively. For C7 rs1061429 C > A polymorphism, AA genotype was associated with the elevated risk for developing gastric cancer (OR = 2.16, 95% CI [1.37-3.38]). In stratified analysis, C7 rs1376178 AA genotype increased the risk of GC among males (OR = 2.88, 95% CI [1.81-4.58]), but not among females (OR = 1.06, 95% CI [0.55-2.06]). Individuals carrying rs1061429 AA significantly increased the risk of gastric cancer among youngers (OR = 2.84, 95% CI [1.39-5.80]) and non-smokers (OR = 2.79, 95% CI [1.63-4.77]). C7 was overexpressed in gastric cancer tissues and serum of cancer patients and was significantly associated with the prognosis. C7 rs1061429 C > A variant contributed to reduced protein level of C7 (P = 0.029), but rs1376178 didn't. Luciferase reporter assay showed that rs1376178C-containing plasmid exhibited 2.86-fold higher luciferase activity than rs1376178 A-containing plasmid (P < 0.001). We also found that rs1061429A allele contributed 1.34-fold increased luciferase activity than rs1061429C allele when co-transfected with miR-591 (P = 0.0012). CONCLUSIONS: These findings highlight the role of C7 in the development of gastric cancer.


Assuntos
MicroRNAs , Neoplasias Gástricas , Masculino , Feminino , Humanos , Neoplasias Gástricas/genética , Complemento C7/genética , Fatores de Risco , Predisposição Genética para Doença/genética , Genótipo , Microambiente Tumoral , MicroRNAs/genética
15.
Cell Death Dis ; 13(1): 41, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013118

RESUMO

Despite the great advances in target therapy, lung cancer remains the top cause of cancer-related death worldwide. G protein-coupled receptor neurokinin-1 (NK1R) is shown to play multiple roles in various cancers; however, the pathological roles and clinical implication in lung cancer are unclarified. Here we identified NK1R as a significantly upregulated GPCR in the transcriptome and tissue array of human lung cancer samples, associated with advanced clinical stages and poor prognosis. Notably, NK1R is co-expressed with epidermal growth factor receptor (EGFR) in NSCLC patients' tissues and co-localized in the tumor cells. NK1R can crosstalk with EGFR by interacting with EGFR, transactivating EGFR phosphorylation and regulating the intracellular signaling of ERK1/2 and Akt. Activation of NK1R promotes the proliferation, colony formation, EMT, MMP2/14 expression, and migration of lung cancer cells. The inhibition of NK1R by selective antagonist aprepitant repressed cell proliferation and migration in vitro. Knockdown of NK1R significantly slowed down the tumor growth in nude mice. The sensitivity of lung cancer cells to gefitinib/osimertinib is highly increased in the presence of the selective NK1R antagonist aprepitant. Our data suggest that NK1R plays an important role in lung cancer development through EGFR signaling and the crosstalk between NK1R and EGFR may provide a potential therapeutic target for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores da Neurocinina-1/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Fosforilação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Receptores da Neurocinina-1/genética , Transdução de Sinais
16.
Elife ; 102021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596044

RESUMO

microRNAs associate with Argonaute proteins, forming the microRNA-induced silencing complex (miRISC), to repress target gene expression post-transcriptionally. Although microRNAs are critical regulators in mammalian cell differentiation, our understanding of how microRNA machinery, such as the miRISC, are regulated during development is still limited. We previously showed that repressing the production of one Argonaute protein, Ago2, by Trim71 is important for mouse embryonic stem cells (mESCs) self-renewal (Liu et al., 2021). Here, we show that among the four Argonaute proteins in mammals, Ago2 is the major developmentally regulated Argonaute protein in mESCs. Moreover, in pluripotency, besides the Trim71-mediated regulation of Ago2 (Liu et al., 2021), Mir182/Mir183 also repress Ago2. Specific inhibition of this microRNA-mediated repression results in stemness defects and accelerated differentiation through the let-7 microRNA pathway. These results reveal a microRNA-mediated regulatory circuit on microRNA machinery that is critical to maintaining pluripotency.


Assuntos
Diferenciação Celular , Linhagem da Célula , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Linhagem Celular , Proliferação de Células , Autorrenovação Celular , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , MicroRNAs/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Eur J Pharmacol ; 908: 174346, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34270985

RESUMO

Non-small cell lung cancer (NSCLC) is the most common cancer in the world. Gefitinib, an inhibitor of EGFR tyrosine kinase, is highly effective in treating NSCLC patients with activating EGFR mutations (L858R or Ex19del). However, despite excellent disease control with gefitinib therapy, innate resistance and inevitable acquired resistance represent immense challenges in NSCLC therapy. Gefitinib potently induces cytoprotective autophagy, which has been implied to contribute to both innate and acquired resistance to gefitinib in NSCLC cells. Currently, abrogation of autophagy is considered a promising strategy for NSCLC therapy. In the present study, YC-1, an inhibitor of HIF-1α, was first found to significantly inhibit the autophagy induced by gefitinib by disrupting the fusion of autophagosomes and lysosomes and thereby enhancing the proapoptotic effect of gefitinib in gefitinib-resistant NSCLC cells. Furthermore, the combinational anti-autophagic and pro-apoptotic effect of gefitinib and YC-1 was demonstrated to be associated with an enhanced of forkhead box protein O1 (FOXO1) transcriptional activity which resulted from an increase in the p-FOXO1 protein level in gefitinib-resistant NSCLC cells. Our data suggest that inhibition of autophagy by targeting FOXO1 may be a feasible therapeutic strategy to overcome both innate and acquired resistance to EGFR-TKIs.


Assuntos
Gefitinibe , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Humanos , Neoplasias Pulmonares
18.
Elife ; 102021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33599613

RESUMO

The regulation of stem cell fate is poorly understood. Genetic studies in Caenorhabditis elegans lead to the hypothesis that a conserved cytoplasmic double-negative feedback loop consisting of the RNA-binding protein Trim71 and the let-7 microRNA controls the pluripotency and differentiation of stem cells. Although let-7-microRNA-mediated inhibition of Trim71 promotes differentiation, whether and how Trim71 regulates pluripotency and inhibits the let-7 microRNA are still unknown. Here, we show that Trim71 represses Ago2 mRNA translation in mouse embryonic stem cells. Blocking this repression leads to a specific post-transcriptional increase of mature let-7 microRNAs, resulting in let-7-dependent stemness defects and accelerated differentiation in the stem cells. These results not only support the Trim71-let-7-microRNA bi-stable switch model in controlling stem cell fate, but also reveal that repressing the conserved pro-differentiation let-7 microRNAs at the mature microRNA level by Ago2 availability is critical to maintaining pluripotency.


Assuntos
Proteínas Argonautas/genética , Células-Tronco Embrionárias/metabolismo , MicroRNAs/metabolismo , Células-Tronco Pluripotentes/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Animais , Proteínas Argonautas/metabolismo , Linhagem Celular , Embrião de Mamíferos/metabolismo , Camundongos , Fatores de Transcrição/metabolismo
19.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33497366

RESUMO

Cancer is caused primarily by genomic alterations resulting in deregulation of gene regulatory circuits in key growth, apoptosis, or DNA repair pathways. Multiple genes associated with the initiation and development of tumors are also regulated at the level of mRNA decay, through the recruitment of RNA-binding proteins to AU-rich elements (AREs) located in their 3'-untranslated regions. One of these ARE-binding proteins, tristetraprolin (TTP; encoded by Zfp36), is consistently dysregulated in many human malignancies. Herein, using regulated overexpression or conditional ablation in the context of cutaneous chemical carcinogenesis, we show that TTP represents a critical regulator of skin tumorigenesis. We provide evidence that TTP controlled both tumor-associated inflammation and key oncogenic pathways in neoplastic epidermal cells. We identify Areg as a direct target of TTP in keratinocytes and show that EGFR signaling potentially contributed to exacerbated tumor formation. Finally, single-cell RNA-Seq analysis indicated that ZFP36 was downregulated in human malignant keratinocytes. We conclude that TTP expression by epidermal cells played a major role in the control of skin tumorigenesis.


Assuntos
Carcinogênese/metabolismo , Queratinócitos/metabolismo , Neoplasias Cutâneas/metabolismo , Pele/metabolismo , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas , Elementos Ricos em Adenilato e Uridilato , Animais , Carcinogênese/genética , Modelos Animais de Doenças , Regulação para Baixo , Receptores ErbB/metabolismo , Redes Reguladoras de Genes , Humanos , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética
20.
Mucosal Immunol ; 14(1): 80-91, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467605

RESUMO

AU-rich element (ARE)-mediated mRNA decay represents a key mechanism to avoid excessive production of inflammatory cytokines. Tristetraprolin (TTP, encoded by Zfp36) is a major ARE-binding protein, since Zfp36-/- mice develop a complex multiorgan inflammatory syndrome that shares many features with spondyloarthritis. The role of TTP in intestinal homeostasis is not known. Herein, we show that Zfp36-/- mice do not develop any histological signs of gut pathology. However, they display a clear increase in intestinal inflammatory markers and discrete alterations in microbiota composition. Importantly, oral antibiotic treatment reduced both local and systemic joint and skin inflammation. We further show that absence of overt intestinal pathology is associated with local expansion of regulatory T cells. We demonstrate that this is related to increased vitamin A metabolism by gut dendritic cells, and identify RALDH2 as a direct target of TTP. In conclusion, these data bring insights into the interplay between microbiota-dependent gut and systemic inflammation during immune-mediated disorders, such as spondyloarthritis.


Assuntos
Aldeído Oxirredutases/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Homeostase , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Tristetraprolina/metabolismo , Aldeído Oxirredutases/metabolismo , Animais , Citocinas/metabolismo , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA